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Abstract

Burkholderia pseudomallei is a Gram-negative environmental bacterium and the aetiological agent 

of melioidosis, a life-threatening infection that is estimated to account for ~89,000 deaths per year 

worldwide. Diabetes mellitus is a major risk factor for melioidosis, and the global diabetes 

pandemic could increase the number of fatalities caused by melioidosis. Melioidosis is endemic 

across tropical areas, especially in southeast Asia and northern Australia. Disease manifestations 

can range from acute septicaemia to chronic infection, as the facultative intracellular lifestyle and 

virulence factors of B. pseudomallei promote survival and persistence of the pathogen within a 

broad range of cells, and the bacteria can manipulate the host’s immune responses and signalling 

pathways to escape surveillance. The majority of patients present with sepsis, but specific clinical 

presentations and their severity vary depending on the route of bacterial entry (skin penetration, 

inhalation or ingestion), host immune function and bacterial strain and load. Diagnosis is based on 

clinical and epidemiological features as well as bacterial culture. Treatment requires long-term 

intravenous and oral antibiotic courses. Delays in treatment due to difficulties in clinical 

recognition and laboratory diagnosis often lead to poor outcomes and mortality can exceed 40% in 

some regions. Research into B. pseudomallei is increasing, owing to the biothreat potential of this 

pathogen and increasing awareness of the disease and its burden; however, better diagnostic tests 
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are needed to improve early confirmation of diagnosis, which would enable better therapeutic 

efficacy and survival.

Melioidosis is an infectious disease caused by the environmental Gram-negative bacterium 

Burkholderia pseudomallei. First recognised in 1911 (REF. 1) (FIG. 1), the organism is 

commonly found in the rhizosphere (the layer of soil directly influenced by root secretions 

and soil microorganisms)2 and surface groundwater of many tropical and subtropical 

regions3,4, and can infect humans and a wide range of animals.

Naturally acquired infections in humans and animals results from exposure through broken 

skin, inhalation or ingestion of B. pseudomallei5; certain environmental conditions, such as 

tropical storms and specific occupations (for example, rice farming), are known to increase 

the risk of exposure6. B. pseudomallei infection can be acute, chronic or latent, although 

infection usually results in subclinical disease as the majority of immunocompetent 

individuals can clear the infection. Only those individuals with B. pseudomallei infection 

who develop clinical symptoms (either acute or chronic) are considered to have melioidosis.

Most cases of melioidosis (85%) result in acute infections from recent bacterial exposure7. 

The majority of patients with acute melioidosis present with sepsis (a life-threatening, 

dysregulated, systemic inflammatory and immune response that can cause organ 

dysfunction) with or without pneumonia, or localized abscesses, regardless of the route of 

infection. However, the presence of nonspecific signs and symptoms can often hinder the 

diagnosis and management of melioidosis, which has been nicknamed ‘the great mimicker’ 

(REF. 8). Chronic melioidosis is defined as a symptomatic infection that lasts >2 months, 

and it occurred in 11% of individuals infected with B. pseudomallei in a 20-year prospective 

Australian study7. The host’s immune response to acute infection is both humoral (involving 

cytokine release, especially interferon-γ (IFNγ)) and cell-mediated, and can completely 

eradicate or control the infection in most immunocompetent individuals. An unknown 

percentage of people exposed to B. pseudomallei can develop a latent infection (that is, the 

infection is asymptomatic and the pathogen is not cleared); activation from latency has been 

estimated to account for <5% of all melioidosis cases7, but may result in infection becoming 

apparent many years after exposure.

The case fatality rate of melioidosis is 10–50%6. Of the individuals who survive acute 

melioidosis, 5–28% experience recurrent infection, which could be due to recrudescence 

(that is, recurrence) of the original strain, which was not completely cleared and persisted in 

a dormant state, or reinfection with a different strain following re-exposure6,9–11. 

Approximately 80% of patients have known risk factors, mainly diabetes mellitus12 (BOX 

1). The host-pathogen interplay is complicated by the tropism of the pathogen for a wide 

variety of cells and its ability to subvert and avoid the host innate immune response13.

Burkholderia mallei is a host-adapted (mainly causing infections in animals) species that 

originally derived from B. pseudomallei following substantial genome reduction (also 

known as genome degradation). B. mallei is extremely infectious, mainly to solipeds 

(mammals that have a single hoof on each foot; for example, horses) but can occasionally 

infect humans. B. mallei is the aetiological agent of glanders, a disease with similar 
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manifestations to melioidosis. The US Centers for Disease Control and Prevention (CDC) 

have classified B. pseudomallei and B. mallei (which was used as a biological weapon in 

World War I)6 as tier 1 select agents because of their biothreat potential (tier 1 select agents 

present “the greatest risk of deliberate misuse with the most significant potential for mass 

casualties or devastating effect to the economy, critical infrastructure; or public 

confidence”)14. No vaccine for either is currently available15,16, which further exacerbates 

concerns of a possible emerging public health threat.

This Primer summarizes the state of the field in melioidosis research, focusing on 

epidemiology, pathophysiology (including host-pathogen interactions), diagnostics, 

screening, prevention and clinical management. In the Outlook, we explore future directions 

of research in the omics and cutting-edge immunology era, argue whether melioidosis 

should be recognized as a neglected tropical disease and discuss whether a viable vaccine is 

on the horizon.

Epidemiology

B. pseudomallei in the environment

B. pseudomallei is well-known to be present in soil and surface water in southeast Asia and 

northern Australia; however, case reports of melioidosis and predictive modelling studies 

suggest that it is probably widely present in many countries across the tropics (BOX 2).

A consensus guideline for soil sampling for B. pseudomallei was proposed in 2013 with the 

goal of elucidating the global distribution of the bacterium17. B. pseudomallei is most 

abundant in soil at depths of ≥ 10 cm from the surface17; however, during the rainy season it 

can move from deeper soil layers to the surface, where it can then multiply17.

B. pseudomallei can survive in extreme conditions, such as in distilled (without nutrients) 

water (for ≥16 years)18, nutrient-depleted soil19 or desert environments20. Outbreaks of 

melioidosis from contaminated, unchlorinated water supplies have been reported in the 

Northern Territory, Australia21, and have been associated with chlorination failure (that is, 

insufficient addition of chlorine to the water) in Western Australia22. B. pseudomallei is also 

commonly found in unchlorinated water supplies and drinking water in rural areas in 

Thailand23. Nosocomial (originating in a hospital) infections have been attributed to B. 
pseudomallei-contaminated wound irrigation fluid, antiseptics and hand wash detergent24,25.

B. pseudomallei has rarely been detected in air. Aerosolized bacteria were first isolated in 

1989 (REF. 26), and in 2015, B. pseudomallei DNA was detected in filtered air using 

quantitative PCR27. Whole-genome sequencing linked the bacteria found in an air isolate to 

the clinical isolate from a patient with mediastinal melioidosis (that is, with infection of the 

midline anatomical structures or connective tissue of the chest)28. Penetration through the 

skin, ingestion and inhalation are all important routes of infection with environmental B. 
pseudomallei5. Reported neonatal cases were probably caused by mother-to-child 

transmission (vertical transmission or breastfeeding)29, healthcare-associated infection29 or 

community-acquired infection29. Melioidosis is not contagious and human-to-human 

transmission has rarely been reported6.
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Global burden of melioidosis

A 2016 modelling study estimated that there are ~165,000 cases of melioidosis in humans 

per year worldwide, of which 89,000 (54%) are estimated to be fatal3 (FIG. 2). This study 

highlights that underdiagnosis and under-reporting of melioidosis are a major issue, 

especially on the Indian subcontinent, where 44% of cases were predicted to occur 

(predicted incidence for India, Indonesia and Bangladesh are ~52,500, ~20,000 and ~16,900 

cases per year, respectively). However, only ~1,300 cases were reported per year worldwide 

since 2010, which is <1% of the estimated annual incidence3. Melioidosis is prevalent in the 

Northern Territory, Australia, and northeast Thailand, where the annual incidence is up to 50 

cases per 100,000 individuals4,7, and the emergence of melioidosis in areas where it was 

previously absent, for example, in northeastern Brazil, could be explained in part by the 

increasing recognition of this disease, owing to increased awareness and improved 

diagnostics30. Although reports of B. pseudomallei isolation from soil and animals in 

equatorial Africa are limited, they suggest that melioidosis is widely distributed across this 

region31–33. For example, Nigeria is predicted to have an incidence of ~13,400 cases per 

year, which is comparable to incidences observed in endemic regions such as India, 

Indonesia and Bangladesh3.

The predicted mortality from melioidosis is comparable to that of measles (95,600 

individuals per year) and higher than that for leptospirosis (50,000 individuals per year) and 

dengue infection (12,500 individuals per year), which are diseases that are considered of 

high priority by many international health organizations3. Melioidosis can affect all age 

groups. In prospective studies in Australia and Thailand, the median age of patients with 

melioidosis was 50 years, with 5–10% ofpatients of <15 years of age7,34,35.

Risk factors

The most common risk factor predisposing individuals to melioidosis is diabetes mellitus, 

which is present in >50% of all patients with melioidosis worldwide35,36 (BOX 1). 

Individuals with diabetes mellitus have a 12-fold higher risk of melioidosis after adjustment 

for age, sex and other risk factors35,36. Other known risk factors include exposure to soil or 

water (especially during the rainy season), male sex (probably because of a greater risk of 

environmental exposure), age of >45 years, excess alcohol consumption and liver disease, 

chronic lung disease, chronic kidney disease and thalassaemia (which probably causes 

neutrophil dysfunction due to iron overload)6,37. Prolonged steroid use and 

immunosuppression can also predispose individuals to infection. Nonetheless, >80% of 

paediatric patients34,38 and ~20% of adult patients have no recognized risk factors35,36. 

Melioidosis in adults who have no risk factors generally occurs in those who have been 

exposed to a high bacterial load, for example, by aspiration of surface water39. Zoonotic 

transmission to humans resulting from contact with livestock is extremely rare; only three 

possible cases have been reported in Australia6.

Mechanisms/pathophysiology

B. pseudomallei is an opportunistic, facultative intracellular, motile saprophyte (an organism 

that obtains its energy from decaying organic matter) that possesses a remarkable intrinsic 
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array of virulence factors (TABLE 1) and broad antimicrobial drug resistance (BOX 3). B. 
pseudomallei is highly adaptable, a property that enables it to generate a variety of clinical 

manifestations, depending on the infected tissue, and to maintain a survival advantage in 

infected hosts and the environment40. Numerous studies have increased our insights into the 

pathogenesis of B. pseudomallei infection13,41–44 (FIG. 3).

B. pseudomallei infection

B. pseudomallei first enters and replicates in epithelial cells of the mucosal surface or 

broken skin, depending on the route of entry, and then spreads to various cell types. 

However, the mechanisms of cell invasion and replication are largely similar and are, 

therefore, discussed collectively (unless otherwise specified).

Epithelial attachment and cell invasion.

B. pseudomallei possesses multiple secretion systems, which are evolutionary apparatuses 

that enable the transport of proteins across cellular membranes in response to the 

environment and, therefore, host cell invasion. The secretion systems are classified 

depending on their structure, function and specificity. The type III secretion system (T3SS) 

comprises a molecular syringe (a structure made of a filamentous needle to translocate 

effector proteins into the surrounding milieu or cells) that is deployed on close contact with 

host cells45,46, T2SS is widely distributed in Gram-negative bacteria47 and T5SS secretes 

autotransporter proteins, which are usually bound to the outer membrane through some 

adhesin-like proteins48.

Attachment to human pharyngeal epithelial cells was initially thought to be mediated by 

capsular polysaccharides49 and type IV pili (hair-like structures on the bacterial surface)50). 

However, internalization into a cell line of human alveolar basal epithelial cells was 

increased in acapsular mutants compared with wild-type B. pseudomallei51. Furthermore, 

the type IV pilin protein PilA (encoded by pilA), a subunit type IV pili needed for adhesion 

to epithelial cells, could also have a role52.

Flagellar motility favours close contact with protective mucosal linings, but flagella are 

probably not a major adhesin for mammalian cells42,53. Two T5SS adhesin proteins, BoaA 

and BoaB (TABLE 1), can enhance adherence. However, double boaA and boaB knockouts 

show residual binding, indicating that multiple adhesins are required for cell adhesion54. 

Guanine nucleotide exchange factor BopE, a T3SS effector, causes rearrangement of the 

host actin cytoskeleton (membrane ruffling) and facilitates ingress55, and BsaQ (a conserved 

inner membrane T3SS protein) mutants displayed a 30% reduction in invasion42, suggesting 

that multiple T3SS effectors mediate cell invasion.

Host factors also play a part in epithelial attachment. Protease-activated receptor 1 (PAR1, 

which belongs to the subfamily of G protein-coupled receptors) is expressed on several cell 

types (for example, endothelial cells, platelets and monocytes) and promotes B. 
pseudomallei cell invasion, growth and dissemination56. However, interestingly, PAR1 

inactivation had no effect on B. pseudomallei-associated mortality in mouse models, 

whereas it delayed time to death when the mice were infected with pneumococci56.
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Intracellular survival and replication.

B. pseudomallei can invade and propagate in both phagocytic and non-phagocytic cells57,58; 

the bacteria replicate intra-cellularly, cause lysis or spread to and infect adjacent cells. This 

process causes acute symptoms, which can vary depending on the tissue or organ infected.

Following endocytosis, B. pseudomallei can be seen in endocytic vesicles and later within 

the cytoplasm where it replicates59,60. The vesicles then fuse with lysosomes and acidify 

rapidly61. The T3SS is crucial for vesicle escape before the bacteria can be degraded, as 

multiple strains mutant for T3SS proteins showed downstream effects, including reduced 

formation of the actin tail (a comet-like filamentous tail made using actin molecules from 

the host that the bacteria use for intracellular motility), intracellular survival, cytotoxicity 

and intercellular spread46,62–64. Survival within the endocytic vesicle is aided by an ecotin (a 

periplasmic serine protease inhibitor) homologue, which is involved in resisting degradation 

by lysosomal enzymes65.

B. pseudomallei can multiply within phagocytes (including neutrophils, monocytes and 

macrophages) without activating a bactericidal response57,58. Despite detection of lysosome 

fusion within B. pseudomallei-infected macrophages (suggesting that degradation of the 

pathogens can occur to some extent), proliferation of the surviving bacteria ultimately 

overwhelms the macrophage66. However, macrophages activated by IFNγ (which mediates 

the immune response to intracellular pathogens) display improved killing of B. 
pseudomallei, probably via increased activation of inducible nitric oxide synthase (iNOS)67.

In fact, bacterial killing is predominantly mediated by reactive nitrogen intermediates and 

reactive oxygen species (ROS)67. Consequently, an important mechanism of B. 
pseudomallei pathogenesis is to suppress iNOS production by upregulating two negative 

regulatory cytokines: suppressor of cytokine signalling 3 (SOCS3) and cytokine-inducible 

SH2-containing protein (CIS)68,69. Superoxide (O2
−) and H2O2 degrading enzymes have 

been associated with mediating B. pseudomallei resistance to oxidative stress70–73 (TABLE 

1).

Evasion of autophagy and cell lysis.

B. pseudomallei may trigger autophagy by a T3SS-dependent process that involves the 

activation of nucleotide-binding oligomerization domain-containing protein 2 (NOD2, an 

intracellular pathogen recognition receptor)74, resulting in bacterial killing75. However, the 

exact role of NOD2 might not be clearcut, as another study shows that NOD2 promotes the 

upregulation of SOCS3 (REF. 76). Hence, the mechanisms by which NOD2 leads to 

containment of B. pseudomallei are probably not mediated by cytokine suppression in 

murine models. Interestingly, polymorphisms in the NOD2 region are associated with 

susceptibility to melioidosis74. However, the effectiveness of autophagy evasion is 

influenced by the expression of the T3SS effector protein Bop A. Loss of Bop A (as 

suggested by its increased colocalization with microtubule-associated proteins 1A/1B light 

chain 3B (LC3; also known as MAP1LC3B), an autophagy marker protein) leads to a 

substantial delay in efficient endosome escape, contributing towards reduced virulence77. 

T3SS probably plays a crucial part in the evasion of autophagy, as bacteria with mutant 
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BopA are taken up by autophagic vesicles more efficiently and have decreased intracellular 

survival78. However, the complete mechanisms of autophagy escape remain to be defined.

B. pseudomallei cytotoxicity for certain cell types is also strain-dependent: some strains 

cause macrophage apoptosis60, some strains cause pyroptosis (an inflammatory form of 

caspase-1-dependent cell lysis)63 and others cause neither57. Macrophage lysis could 

represent an escape mechanism for B. pseudomallei once a threshold bacterial load has been 

reached44. By contrast, apoptosis and degradation of infected neutrophils by macrophages is 

delayed in melioidosis, favouring bacterial survival79.

Intercellular and secondary spread.

Intercellular spread of B. pseudomallei is facilitated by membranous protrusions (generated 

by bacteria-induced rearrangements of the cytoskeleton) formed by the host cell that extend 

into neighbouring cells, through which bacteria travel by actin-mediated motility60,80. The 

autotransporter BimA interacts with monomeric actin at the tail-end of the bacteria, where 

polymerization occurs81. Nerve root translocation and migration along infected neurons until 

B. pseudomallei reaches the central nervous system has been supported by animal studies82 

and linked especially to the minority bacterial genotype carrying BimABm (B. mallei-like 

BimA) that is found mainly in Australia83. Such cell-to-cell spread occurring along nerve 

roots could explain the melioidosis encephalomyelitis syndrome (inflammation of the brain 

and spinal cord), with brainstem disease following nasal or throat infection, and myelitis 

(inflammation of the spinal cord) following infection through the skin on the limbs34.

Intercellular spread results in cell fusion and the formation of multinuclear giant cells 

(MNGCs)84, a hallmark of melioidosis44. Eventual death of MNGCs results in the formation 

of plaques (one or more MNGCs lyse, leaving a clear zone surrounded by a ring of fused 

cells) and subsequent damage to host cells, which may serve as a nidus for further B. 
pseudomallei replication or latent or persistent infection85.

As well as direct cell-to-cell spread, B. pseudomallei can also spread to the bloodstream, 

causing sepsis, and infect antigen-presenting cells, which then can transport the bacteria to 

the lymphatic system and contribute to dissemination of infection to secondary sites. 

However, the exact mechanism of secondary spreading remains elusive. Bacteria also remain 

viable in dendritic cells, inducing maturation and trafficking to secondary lymphoid 

organs86.

Latent or persistent infection.

B. pseudomallei can remain latent for extended periods before immunosuppression or other 

host stress responses reactivate bacterial proliferation and melioidosis develops. Reported 

latency periods have ranged from 19 years to 29 years87–89, indicating that B. pseudomallei 
can enter a dormant state and evade immune surveillance44. Neither the site (tissue or 

subcellular level) of latency nor the mechanisms by which B. pseudomallei remains 

undetected are clear90. By contrast, high antibody titres detected in patients years after an 

episode of acute melioidosis suggest continuous exposure or covert sequestration (bacteria 

hiding in cryptic sites with downregulation of products)91. B. pseudomallei has been found 

within the nucleus, which could potentially act as a persistence site for later 
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recrudescence92. Strain variability or small colony variants could also play a part in 

determining whether latent or persistent infection is established93.

Some B. pseudomallei persistence (and possibly latency) factors have been characterized, 

including toxin-antitoxin systems (composed of a toxin (protein) and its cognate antitoxin (a 

protein or non-coding RNA)), metabolic enzymes and adaptive mutations94. By entering a 

slower growth rate, toxin-antitoxin systems enable bacteria to survive under stressful 

environments, whereas small colony variants can shift to an acid-tolerant state to survive in 

abscesses95,96. Furthermore, the host’s immune response and selection pressure of 

antibiotics can contribute to selecting resistance patterns that can also facilitate the 

establishment of persistent infection (BOX 3). Multiple genotypes have been identified 

within a single infection episode, which at least partly results from genetic adaptation to the 

human host, including inactivation of virulence and immunogenic factors and deletion of 

pathways involved in environmental survival97. Thus, bacterial isolates from patients with 

persistent or recurrent infection show extensive adaptive regulatory changes that favour 

bacterial persistence, including genome reduction and increased antibiotic resistance. Data 

do not yet support a correlation between phages and acquired pathogenicity in B. 
pseudomallei97,98.

Host immune response

Most patients with melioidosis have at least one predisposing risk factor, suggesting that 

initiation, progression and outcome of the disease are largely determined by the host’s 

immune status12,90. For example, genetic polymorphisms in TNF (encoding tumour necrosis 

factor), NOD2, TLR4 (encoding Toll-like receptor (TLR) 4) and TLR5 have all been linked 

to disease severity in patients with melioidosis74,99–101. Hypofunctional TLR5 was 

associated with decreased organ failure, improved survival and a functional cytokine 

response, possibly mediated by IL-10 ( REF. 102). Interestingly, individuals with the 

hyporesponsive TLR5 polymorphism display heightened susceptibility to invasive 

aspergillosis (diseases caused by infection of fungi of the genus Aspergillus) and 

Legionnaires’ disease (atypical pneumonia caused by Legionella bacteria)103.

Innate immune response.

B. pseudomallei activates the complement pathway, but the bactericidal activity of the 

complement membrane attack complex is hampered by the external capsular 

polysaccharides of the bacteria104. Owing to its capsule and lipopolysaccharides (LPSs), B. 
pseudomallei is also resistant to lysosomal defensins and cationic peptides (which contribute 

to bacterial killing by disrupting the structure of the cell membrane of the pathogen), 

enabling survival in human serum and within phagocytes44.

Neutrophil, macrophage and lymphocyte recruitment at the point of infection is triggered by 

activation of pattern recognition receptors, such as TLRs. Despite the possible detrimental 

effects of excessive neutrophil recruitment105, activated neutrophils play a pivotal part in 

early bacterial containment106.
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TLRs recognize conserved pathogen-associated molecular patterns (PAMPs) and mediate an 

inflammatory immune response via various signalling adaptor proteins, including myeloid 

differentiation primary response protein MyD88 (FIG. 3). MyD88 downregulation in 

experimental melioidosis increases susceptibility to infection as a result of diminished 

neutrophil recruitment and activation107. B. pseudomallei triggers the upregulation of 

multiple TLRs including TLR2, TLR4 (and its co-receptor monocyte differentiation antigen 

CD14) and TLR5 in host cells, leading to the production of pro-inflammatory and anti-

inflammatory cytokines via nuclear factor-κB (NF-κB)108–110. TLR signalling can be 

dampened or dysregulated by structural variants of LPSs111,112. In addition, LPS recognition 

seems to be model-dependent: it occurs solely through TLR4 in murine models, whereas in 

humans, TLR2 has an additional role113.

Phagosomal escape exposes B. pseudomallei to intra-cellular TLR-independent pattern 

recognition receptors, namely, NOD-like receptors, and activates the formation of the 

inflammasome, a multimeric protein complex that includes a sensor molecule and caspase 1 

(REF. 114). Once the sensor molecule detects B. pseudomallei PAMPs, caspase 1 is 

activated and rapid pyroptosis ensues115 (FIG. 3). Additionally, the activation of caspase 1 

releases active IL-1β and IL-18, which are both increased in patients with septic 

melioidosis105,116–118. IL-18 contributes to IFNγ induction and, therefore, has a protective 

effect against B. pseudomallei infection105,116, whereas IL-1β has a potential deleterious 

role owing to excessive recruitment of neutrophils. This interplay supports intracellular 

bacterial growth, tissue damage and inhibition of IFNγ production105.

Adaptive immune response.

Although B. pseudomallei antibodies (due to either past or asymptomatic infection) are 

common in individuals from melioidosis-endemic regions, their role in developing 

functional immunity to melioidosis is ambiguous, as reinfection from different strains is 

possible and, therefore, can occur even in the presence of high antibody levels91.

A strong, comprehensive, cell-mediated immune response is essential for protection against 

progression of infection and for bacterial clearance119. CD4+ T cells are paramount for B 

cell isotype switching and for activation of cytotoxic CD8+ T cells and macrophages120. 

Consistent with this, human survivors of melioidosis display increased levels of CD4+ and 

CD8+ T cells, whereas a decrease in the levels of these cells is specifically correlated with 

greater mortality. Moreover, vaccines that evoke an immune response skewed towards the 

activation of T helper 1 (TH1) cells (which promote cellular responses) provide protection 

against melioidosis, with potential to generate sterilizing immunity (which protects from the 

onset of both disease and infection)121,122.

Gradually, granulomas (containing neutrophils, macrophages, lymphocytes and MNGCs) 

form at the site of infection. Intracellular ‘globes’ of bacteria are seen within MNGCs in a 

background of acute necrotizing inflammation123, which could lead to the development of 

granulomas. Unfortunately, the dynamic of granuloma formation has not been studied as 

extensively in melioidosis as in tuberculosis, but it has been recognized as a source of 

bacterial reactivation in persistent or latent infections. Most clinicians would advocate active 
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investigation of the nature of granulomas incidentally found in patients from melioidosis-

endemic regions.

Unlike in infections caused by other organisms with pathogenicity mechanisms similar to 

those of B. pseudomallei (such as, for example, non-typhoidal Salmonella124), HIV 

infection does not seem to be a risk factor for melioidosis or for a more-severe or fatal 

outcome125. In individuals with HIV infection, macrophages show a dysregulated cytokine 

response (for example, of TNF, IL-10 and IL-12) owing to a low CD4+ T cell count but 

retain the capacity for bacterial internalization and intracellular killing126. In murine models 

of melioidosis, depletion of T cells and natural killer cells (hence a 95% reduction in IFNγ 
production) did not hamper bacterial control, suggesting substantial redundancy of defence 

mechanisms and the involvement of macrophages expressing major histocompatibility 

complex (MHC) class II127. For primary melioidosis, it has been suggested that bystander T 

cell activation is not required for host survival and could play a more substantial part during 

the antigen-induced activation phase than during the cytokine-mediated activation127. 

Paradoxically, a strong CD4+ and CD8+ T cell response was observed during acute infection 

in patients with melioidosis, and lower responses were associated with increased 

mortality121. Although the current weight of evidence favours a role for T cells in late stages 

of infection, little is known about the role of specific T cell subsets in regulating the speed of 

progression or course of B. pseudomallei infection15.

The inflammatory response.

The initial pro-inflammatory response to B. pseudomallei infection is a protective, bacterial 

killing mechanism. However, a dysregulated cytokine-mediated immune response could 

result in excessive inflammation with a potentially fatal outcome90. Elevated levels of pro-

inflammatory cytokines (such as IL-6, IL-12, IL-15, IL-18, TNF and IFNγ) have been 

observed in patients with melioidosis, some of which have been correlated with a fatal 

outcome (for example, IL-6 and IL-18 are considered mortality predictors)116,128. IFNγ 
production activates T cells and natural killer cells; in murine models, natural killer cells are 

detected at the site of infection and produce 60–80% of the secreted IFNγ106,129.

Abrogation of TNF or its receptors (in knockout models) results in susceptibility to 

melioidosis, with increased neutrophil-based inflammatory influx and associated 

necrosis106,130,131. It is postulated that, in the absence of TNF, a hyperproduction of 

cytokines and chemokines occurs, leading to septic shock and mortality130.

Anti-inflammatory cytokines (such as IL-10 and IL-4), TNF receptor type I (TNFR1; also 

known as TNFRSF1A) and IL-1 receptor antagonist (IL1RA) are also upregulated during 

septic melioidosis. Significant increases in IL-1RA and TNFR1 expression were observed in 

non-survivors117,132. Fate-onset inflammatory mediators are also correlated with clinical 

outcome and mortality133,134: in experimental melioidosis, macrophage migration inhibitory 

factor (MIF) impairs bacterial defence, and neutralizing antibodies against high mobility 

group protein B1 (HMGB1) could be used as an adjunctive therapy to improve outcome. 

Coagulation also has a role in melioidosis severity (BOX 4).
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Diagnosis, screening and prevention

Melioidosis is grossly underdiagnosed worldwide3, mainly owing to a lack of diagnostic 

microbiological laboratories serving the low-income rural populations who are at greatest 

risk of infection and a lack of awareness of the disease amongst physicians and laboratory 

staff. Even in good microbiological laboratories, B. pseudomallei could initially be 

discarded as a contaminant (a commensal or non-pathogenic environmental species), 

especially in non-endemic areas135.

Clinical diagnosis

The incubation period of acute infections is on average 9 days136, ranging from 1–21 days, 

although a more severe form of the disease with shorter incubation can occur after inhalation 

or aspiration of contaminated fresh water137. In patients with melioidosis, the clinical 

presentation, severity and outcome are affected by the presence or absence of risk factors, 

the route of infection and the bacterial load and strain, as well as the presence or absence of 

specific non-ubiquitous B. pseudomallei virulence genes12,83. The clinical spectrum of 

disease varies from localized cutaneous manifestations at the bacterial entry site with no 

systemic manifestations to sepsis and death (FIG. 4). Bacteraemia on admission occurs in 

40–60% of all patients diagnosed with melioidosis, and septic shock occurs in ~20% of all 

cases. Pneumonia is the presenting illness in about half of all cases. Dissemination of the 

bacteria to internal organs is common, especially the spleen, prostate, liver and kidneys.

Limitations of clinical diagnosis.—Making a diagnosis on clinical grounds alone is 

very difficult, although in known endemic areas, a patient with suggestive clinical and 

epidemiological (the presence of risk factors, such as diabetes mellitus and occupational or 

seasonal exposure) features should be treated empirically with antibiotics that target B. 
pseudomallei. As the clinical presentation of melioidosis can be nonspecific, the disease 

should be considered in anyone with a fever in endemic and potentially endemic countries 

(listed in REF. 3), in particular in individuals with abscesses (especially in the liver, spleen, 

prostate or parotid) or pneumonia. However, not all patients have risk factors. Laboratory 

tests are required to confirm the diagnosis of melioidosis138.

Microbiological diagnosis

Culture.—Culture remains the mainstay of melioidosis diagnosis. B. pseudomallei can 

grow on most routine laboratory media but might not be recognized and could be dismissed 

as a contaminant, or could be mis-identified as other bacteria (such as Pseudomonas spp. and 

Bacillus spp.) unless laboratory staff are familiar with its appearance138 (FIG. 5). B. 
pseudomallei is never part of the normal human flora, and its isolation from any clinical 

sample should be regarded as diagnostic of melioidosis. As B. pseudomallei is classified as a 

hazard group 3 pathogen and tier 1 select agent139, doctors should alert the hospital 

laboratory if melioidosis is suspected in an admitted patient to ensure that appropriate 

precautions can be followed. All microbiology laboratory staff in melioidosis-endemic areas 

should receive appropriate training regularly and follow local safety standards.
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It is crucial that the appropriate clinical samples are collected and sent for culture to 

laboratories that are familiar with the disease and its causative organism. Blood cultures are 

the most important sample, as bacteraemia is common. Culture of throat or rectal 

swabs140,141 and the centrifuged deposit from urine142 are also recommended in all cases of 

suspected melioidosis, as these could be the only positive samples in some patients. Other 

samples that should be cultured include pus from abscesses and sputum in patients with 

pneumonia. Although blood cultures are positive in ~50% of patients overall7 and in up to 

75% ofpatients in some reports143,144, this proportion is lower in children38, potentially 

reflecting that they usually do not have classic melioidosis risk factors. Because cultures 

have low sensitivity (60%)145, repeating cultures (especially of blood, sputum, urine and pus 

samples) should be considered in patients with strong indications of B. pseudomallei 
infection, as it is not uncommon to find subsequent samples positive despite initial negative 

results. If patients do not improve after 3–7 days of treatment for melioidosis and all culture 

results are negative, further investigations and a re-evaluation of the diagnosis and treatment 

should be considered.

B. pseudomallei grows on most routine laboratory media, but more slowly than many other 

organisms and, therefore, it might be outgrown in samples from sites that normally have a 

microbial flora; thus, selective media are preferable. Agar plates should be incubated and 

inspected daily for up to 4 days in suspected cases.

Standard biochemical tests and kit-based identification methods can be used to confirm the 

identity of colonies. As misidentification of B. pseudomallei with such methods are not 

uncommon138, the use of multiple methods is recommended. An antibody–antigen binding 

approach using a monoclonal antibody-based latex agglutination assay is very useful for 

screening suspect colonies146. Increasing numbers of clinical laboratories use matrix-

assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry for 

bacterial identification, as this method (combined with appropriate databases) can provide an 

accurate identification of B. pseudomallei147. Numerous molecular approaches for species 

identification have been described, including 16S rDNA sequencing148 and specific 

PCRs149, although these tests are often only available in research and reference laboratories. 

The antimicrobial susceptibility pattern of B. pseudomallei is very characteristic, and in 

resource-limited areas, a simple disc diffusion antibiotic sensitivity test (to determine the 

resistance to gentamicin and colistin (or polymyxin) and the susceptibility to amoxicillin-

clavulanic acid (also known as co-amoxiclav)) has been recommended to screen Gram-

negative rod-shaped bacteria that produce cytochrome oxidase138,143, although it should be 

noted that gentamicin-susceptible isolates of B. pseudomallei predominate in some 

regions144.

Direct detection in clinical samples.—Because melioidosis can have severe, if not 

fatal, consequences, treatment should not be delayed by waiting days for culture results; 

thus, direct detection of the organism in clinical samples could provide a quick confirmation 

of the diagnosis. B. pseudomallei can be observed with light microscopy (the organism is 

often described in textbooks as a Gram-negative rod-shaped bacterium with bipolar staining 

that resembles a safety pin), but light microscopy lacks sensitivity and specificity150. 
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Immunofluorescent microscopy has a specificity approaching 100%, although the sensitivity 

is <50% compared with culture151.

Alternative approaches using antigen detection or nucleic acid amplification have also been 

used. A lateral flow immunoassay that detects the extracellular capsular polysaccharides has 

been developed152, but it has not yet been extensively evaluated and, although it shows good 

specificity, it seems to have poor sensitivity, especially for blood specimens153. Numerous 

PCR assays with high specificity for B. pseudomallei have been developed since the 1990s 

and have undergone small-scale clinical evaluations. The most promising assay targets the 

T3SS gene cluster154, although the sensitivity in blood samples depends at least in part on an 

adequate bacterial concentration155. However, these PCR assays are not routinely used for 

clinical diagnosis in endemic areas, even in high-income countries such as Singapore and 

Australia: in addition to sensitivity issues, these tests are not cost-effective in providing the 

timely confirmation of diagnosis, which clinicians need to make therapeutic decisions.

Serology.—The serological diagnosis of melioidosis is difficult. Many different assays 

have been developed for detecting antibodies against B. pseudomallei, but most of them are 

based on poorly characterized antigens and have never been internationally standardized or 

subjected to extensive critical evaluation. The most widely used is an indirect 

haemagglutination test (a simple serological test used to detect antibodies raised against B. 
pseudomallei). The background seropositivity rates in the healthy population in some 

endemic areas are very high, presumably because of repeated exposures to B. pseudomallei 
or closely related organisms156,157. As a result, many patients presenting with fever are 

misdiagnosed with melioidosis in endemic countries in southeast Asia on the basis of a 

positive indirect haemagglutination test. By contrast, some patients with melioidosis never 

mount a good antibody response, perhaps because their immune system is compromised. 

The indirect haemagglutination test on admission has a reported sensitivity of only 56% in 

Australia158 and 73% in Thailand157, although in the Australian study, 68% of the patients 

whose tests were negative on admission subsequently showed seroconversion158. Thus, the 

diagnosis of melioidosis should not rely on the indirect haemagglutination test.

New assays based on purified antigens are being developed and have undergone small-scale 

evaluations, with some evidence of improved sensitivity and specificity159–161. A protein 

microarray that contains 20 recombinant and purified B. pseudomallei proteins provides a 

standardized, easy-to-perform test for the detection of B. pseudomallei-specific antibody 

patterns162 and could have the potential to improve the serodiagnosis of melioidosis in 

clinical settings.

Prevention

In northern Australia, basic public health advice is given every year to the general 

population, and especially to high-risk groups, such as avoiding direct contact with soil and 

water at the start of each rainy season163. In Thailand, evidence-based guidelines for the 

prevention of melioidosis recommend that residents, rice farmers and visitors should wear 

protective gear (such as boots and gloves) if direct contact with soil or water is necessary, 

only drink bottled or boiled water and avoid outdoor exposure to heavy rain or dust clouds5. 
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The guidelines also encourage cessation of smoking (particularly in those with underlying 

conditions such as diabetes mellitus) and discourage the application of herbal remedies or 

organic substances to wounds5. However, the effectiveness of this advice in reducing the 

incidence of infection has not been proven. Large-scale water chlorination has been very 

successful in Australia despite theoretical concerns about B. pseudomallei survival in some 

conditions164. In low-income and middle-income countries, water should be boiled before 

consumption. Ultraviolet light treatment is effective for remediation of water contaminated 

with B. pseudomallei and could be recommended in high-income countries in households 

where individuals are at increased risk of contracting melioidosis165.

However, public awareness of melioidosis in developing tropical countries is limited, and 

preventive approaches are not always adopted166. A multifaceted intervention at community 

and government levels is required for successful prevention and is currently being 

prospectively evaluated in northeast Thailand167.

If high-risk laboratory exposure to B. pseudomallei occurs, post-exposure prophylaxis (PEP) 

is recommended; high-risk incidents include the exposure of penetrating injuries, mouth or 

eyes to B. pseudomallei-contaminated materials and the generation of aerosols outside of a 

biological safety cabinet168. PEP consists of oral antimicrobial treatment with trimethoprim–

sulfamethoxazole or, if the organism is resistant or the patient is intolerant, doxycycline or 

co-amoxiclav for 21 days168. The potential benefit of PEP must be weighed against the fact 

that trimethoprim–sulfamethoxazole can have severe adverse effects: for individuals 

involved in a low-risk incident, the decision to begin PEP should be based on the presence of 

known risk factors for naturally acquired melioidosis. Individuals with known risk factors 

should be advised to receive PEP, whereas in the absence of known risk factors monitoring is 

sufficient143,168.

Management

Early diagnosis and the start of antimicrobial therapy specific to B. pseudomallei are crucial 

for melioidosis treatment. In locations with resources for rapid diagnosis, early 

implementation of optimal antibiotic therapy and state-of-the-art intensive care facilities for 

managing severe sepsis, mortality is ~10%12. Nevertheless, such resources are not available 

or are limited in many endemic regions, and in those circumstances, mortality is ≥40%12. 

The majority of B. pseudomallei isolates from primary infections have the same 

characteristic antimicrobial susceptibility profiles. B. pseudomallei is susceptible to β-

lactam antibiotics (such as ceftazidime, meropenem, imipenem and co-amoxiclav), although 

the bactericidal activity of these drugs varies, and is almost always susceptible to 

doxycycline, chloramphenicol and trimethoprim–sulfamethoxazole169–171, although these 

agents only have bacteriostatic activity. Most isolates are susceptible in vitro to piperacillin, 

ceftriaxone and cefotaxime, but these agents are less effective clinically172. However, B. 
pseudomallei is resistant to penicillin, ampicillin, first-generation and second-generation 

cephalosporins, gentamicin, tobramycin, streptomycin, macrolides and polymyxins (BOX 

3). Of note, clonal groups of isolates susceptible to gentamicin are common in Sarawak, 

Malaysia144.
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On the back of the global concerns of antimicrobial resistance and the already limited 

options for treating melioidosis, new antimicrobials have been tested in vitro and in animal 

models, but none can yet replace ceftazidime and meropenem173. Doripenem has minimum 

inhibitory concentrations (the lowest concentrations that can prevent visible bacterial growth 

after over-night incubation) similar to meropenem, but ertapenem, tigecycline and 

moxifloxacin seem to have limited in vitro activity174.

As melioidosis is not a contagious disease, isolation of patients or special precautions are 

usually not required within endemic areas. However, as few nosocomial infections have been 

reported24,175,176, healthcare providers are recommended to follow universal precautions177 

and standard infection control practices, including hand hygiene178. Potential contamination 

of the ward and local environment from patients with superficial lesions or pneumonia has 

been raised as a concern, but such contamination has never been documented.

Formal guidelines for melioidosis therapy, including recommended dosage and duration of 

each therapeutic phase, have been published by the CDC after a 2010 expert workshop that 

updated prior consensus-based guidelines168. Antimicrobial therapy consists of the initial 

intensive phase and the subsequent eradication phase (BOX 5).

Initial intensive therapy

Intravenous ceftazidime or meropenem is the preferred choice179; the duration of initial 

intensive therapy should last a minimum of 10–14 days, with longer intensive therapy for 

critically ill patients, including those with extensive pulmonary disease, deep-seated 

collections or organ abscesses, osteomyelitis (infection of bone), septic arthritis or 

neurological melioidosis (BOX 5). The therapeutic response can be slow; the median time to 

resolution of fever is up to 9 days180, with longer times in patients with deep-seated 

abscesses. The addition of trimethoprim–sulfamethoxazole to ceftazidime for the intensive 

phase is used by some physicians for certain types of infection (BOX 5) but conferred no 

survival benefit in studies in Thailand181,182.

Imipenem and meropenem have the lowest minimum inhibitory concentrations against B. 
pseudomallei and have faster bacterial killing rates than ceftazidime in vitro183,184. The 

recommendation of meropenem as the drug of choice for severe melioidosis with septic 

shock is also supported by observational data from Australia185. However, ceftazidime 

remains the drug of choice for initial therapy for most patients with melioidosis, and there is 

no conclusive evidence that meropenem is superior to ceftazidime in patients who are not 

critically ill. In Australia, meropenem is switched to ceftazidime when those patients with 

severe disease recover and are well enough to be discharged from the intensive care unit to 

general wards.

Eradication therapy

After the initial intensive therapy, subsequent eradication therapy with oral antibiotics is 

recommended to prevent recrudescence of the disease or relapse of the patient. 

Trimethoprim–sulfamethoxazole is the preferred agent for eradication therapy (BOX 5), and 

co-amoxiclav or doxycycline is the second choice. Reports of primary resistance to 
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trimethoprim–sulfamethoxazole in >10% of B. pseudomallei isolates from Thailand and 

other southeast Asian countries were demonstrated to be inaccurate171.

Based on empirical experience and therapeutic modelling, dosing recommendations for 

trimethoprim–sulfamethoxazole186 and co-amoxiclav187 in melioidosis are higher than the 

standard doses used with these antibiotics. Consequently, owing to the long-term course of 

trimethoprim–sulfamethoxazole required, adverse effects are reported in up to 40% of 

patients10. In Thailand, this drug is usually avoided in patients who have glucose-6-

phosphate dehydrogenase (G6PD) deficiency, owing to the risk of haemolytic anaemia, 

although patients are not routinely screened for G6PD activity prior to treatment. Rash, 

gastrointestinal symptoms, hyperkalaemia (high serum potassium levels that can lead to 

muscle weakness and arrhythmias) and rising levels of serum creatinine (which could 

indicate renal dysfunction) could require dose modification or cessation of trimethoprim–

sulfamethoxazole therapy, which can be replaced by doxycycline or co-amoxiclav. 

Desensitization (a strategy to safely induce drug tolerance and limit the possibility of a type 

I hypersensitivity reaction) should be considered for non-severe skin reactions attributed to 

trimethoprim–sulfamethoxazole.

In Australia, trimethoprim–sulfamethoxazole is the preferred eradication therapy for 

children and potentially in pregnant women after the first trimester (owing to the risk of 

neural tube or other congenital defects), whereas in some locations in Thailand co-

amoxiclav has been used for eradication therapy in children and in pregnancy. However, 

dosing with co-amoxiclav is problematic, and acquired resistance is well documented when 

co-amoxiclav or doxycycline is used4.

Treatment duration

Lengthening the duration of the initial intensive therapy for patients with more-severe 

melioidosis has contributed to the decrease in mortality in regions with the necessary 

healthcare resources. A retrospective analysis of patients who were treated according to the 

Royal Darwin Hospital melioidosis treatment guidelines, which define the minimum 

recommended duration of initial intensive therapy based on the clinical presentation188, 

supports a longer intravenous therapy for critically ill patients. The median duration of the 

initial intensive therapy for such patients in that analysis was ~4 weeks and only 5 patients 

(1.2%) relapsed. Although non-compliance of patients during eradication therapy is 

common as patients stop taking the antibiotics early, skip doses or do not take any drug at all 

after discharge, the relapse rates in the Darwin study are low and are attributed to 

prolongation of the initial intensive therapy188. Studies are required to assess whether future 

guidelines can include options based solely on intravenous therapy without a long-term 

eradication phase.

Studies from Thailand showed that failure of the eradication therapy is associated with poor 

adherence to therapy, more-severe infections (for example, multifocal disease and 

bacteraemia) and a duration of eradication therapy of <8 weeks189–191. These findings 

support the recommendations for an eradication therapy of 3–6 months (BOX 5). Case series 

reported that selected patients with localized cutaneous disease could be successfully treated 

with oral trimethoprim–sulfamethoxazole for 3 months without preceding initial intensive 
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therapy34,192,193. However, such a regimen must be restricted to patients who have no signs 

of sepsis or organ dysfunction, no underlying risk factors and no dissemination of the 

infection to distant sites, including regional lymph nodes.

Surgical aspects of therapy

Surgical drainage is usually required for single, large abscesses in the liver and muscles and 

prostatic abscesses194, but it is not necessary or possible for multiple small abscesses in the 

spleen, liver and kidneys. Septic arthritis (inflammation of the joints due to the infection) 

usually requires drainage and washout and might require repeated procedures. Other internal 

abscesses rarely need to be drained as they frequently resolve with medical therapy. 

Osteomyelitis can be very extensive when diagnosis and appropriate antibiotic therapy are 

delayed, and in such cases, aggressive and often repeated surgical debridement of the 

necrotic bone is usually necessary195. However, early long-bone osteomyelitis without 

abscess formation and vertebral osteomyelitis without epidural abscess might not require 

debridement. Mycotic aneurysms (caused by bacterial infiltration of the arterial wall) require 

urgent surgery, often with insertion of prosthetic vascular grafts. Lifelong suppressive 

therapy with trimethoprim–sulfamethoxazole might be indicated for patients who have 

received prosthetic grafts for mycotic aneurysms.

Adjuvant therapy

State-of-the-art intensive care management can sub-stantially decrease mortality in patients 

with melioidosis and sepsis or septic shock196,197, and appropriate guidelines are 

available198.

Granulocyte colony-stimulating factor (G-CSF, which stimulates the production of 

neutrophils in the bone marrow) has been used empirically in patients with septic shock. The 

rationale is to counteract the functional neutrophil defects that are thought to be crucial in 

the pathogenesis of severe melioidosis. Early observational data showed a significant 

improvement in survival with G-CSF, but this result was confounded by concomitant 

improvements in other clinical parameters199. A subsequent randomized controlled trial in 

Thailand showed no overall survival benefit with addition of G-CSF200; nevertheless, 

survival was significantly longer in the G-CSF group in settings with limited intensive care 

resources, and adjuvant G-CSF is still used for melioidosis-associated septic shock in some 

hospitals with state-of-the-art intensive care facilities. Preclinical studies have shown that 

administration of clinically available IL-1β blocking agents can protect mice against overt B. 
pseudomallei infection and mortality105,201. This finding is in line with reports that patients 

with melioidosis who have diabetes mellitus and take glibenclamide (also known as 

glyburide) have a lower mortality and attenuated inflammatory responses compared with 

patients who do not take glibenclamide202 (BOX 1). Given the crucial role of immune 

function in melioidosis pathogenesis, patients with melioidosis-associated sepsis or septic 

shock could benefit from newly available immune-modulating therapies, such as IL-7, 

granulocyte-macrophage colony-stimulating factor and anti-PD1 (programmed cell death 

protein 1).
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Quality of life

Recrudescence and recurrence of melioidosis

Recrudescent melioidosis with a return of clinical illness and culture positivity can occur 

during the eradication treatment period if the initial intensive therapy is ceased too early, 

internal abscesses have not been diagnosed or adequately drained or if the oral eradication 

therapy is not adhered to or is ceased too early. Patients with recrudescence will need 

hospital admission, intravenous parenteral antimicrobials and re-examination for sites of 

infection.

Once both initial intensive and eradication therapies have been successfully completed, 

recurrent melioidosis could be due to either recrudescence of the original infection, as 

confirmed by bacterial isolate genotyping, or a new infection with a different strain190,203. 

With improvements in therapy, recrudescence decreased from ~10% of cases to <5%; new 

infections in survivors of melioidosis are now more common than recrudescence188.

Long-term sequelae

For survivors of melioidosis, the main determinants of future health are their underlying risk 

factors that predisposed them to the initial infection. Many of the patients in the Darwin 

Prospective Melioidosis Study have subsequently died or had a substantial and ongoing 

disability as a consequence of comorbidities such as diabetes mellitus, chronic kidney 

disease or malignancy (B.J.C., unpublished observation). The most severe melioidosis-

associated disability is residual neurological deficit subsequent to melioidosis-associated 

encephalomyelitis. Although rare, neurological complications are particularly problematic in 

children and can range from severe residual quadriparesis (muscle weakness in all limbs) or 

severe flaccid paraparesis (partial or complete paralysis of both legs) to persisting isolated 

foot drop (an abnormal gait in which the forefoot drops owing to weakness)34. Limited 

range of motion, sinus tract (an infected tract connecting a deep-seated infection to the 

surface or another organ and often discharging pus) formation and joint deformities are also 

common in patients with bone and joint infections195,204.

Outlook

Melioidosis as a neglected disease

Neglected tropical diseases are understudied diseases that remain endemic in many 

developing countries around the world205. Melioidosis is not included in most lists of 

neglected tropical diseases, including the WHO list205, even though it has high mortality and 

is potentially preventable and treatable3. Thus, efforts by the international research 

community are needed to raise awareness of melioidosis within the WHO and regional and 

local health agencies, as well as in the general public in endemic areas. In 2015, the 

International Melioidosis Society (IMS) was formed by melioidosis researchers to raise 

awareness and knowledge of the disease amongst all stakeholders, and in 2016, a Research 

Collaboration Network (RCN) was formed to bring the disease to the attention of public 

health officials and policy makers in melioidosis-endemic countries. An interactive map and 

disease information are available on the IMS-RCN website (http://www.melioidosis.info).
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Melioidosis in developing countries

Diagnosis.—In developing countries, melioidosis is most common amongst members of 

the rural population, who often have limited access to even simple diagnostics. Furthermore, 

even if clinical microbiology laboratories are available, they might be underused owing to 

costs or lack of trained staff206. Non-culture-based methods to diagnose bacterial infectious 

diseases are increasingly being encouraged207, but they have not been extensively developed 

and evaluated for melioidosis. Thus, the priorities for improving melioidosis case 

ascertainment in tropical endemic areas are the establishment of basic clinical microbiology 

laboratories and education of both clinicians and laboratory technicians about melioidosis 

and prevention.

Management.—To reduce acute melioidosis mortality, the availability and affordability of 

ceftazidime or carbapenems need to improve. In Thailand, an upper-middle-income country, 

a 14-day course of ceftazidime or carbapenem costs ~US$60 or US$1,080, respectively, and 

is covered by Thailand’s Universal Coverage Scheme208. Nonetheless, in other low-income 

and middle-income countries, these drugs could be more expensive, have limited availability 

or be excluded from the country’s universal health coverage, and patients frequently cannot 

afford to pay for the drugs themselves200. Studies on how best to allocate and use resources 

for melioidosis in low-income and middle-income countries are urgently needed.

The One Health Initiative

In 2016, melioidosis was highlighted as a sapronosis, a disease of animals and humans 

caused by an environmental organism; however, the disease in animals and geographical 

distribution of distinct human clinical manifestations (for example, parotitis is mainly 

observed in children within southeast Asia and encephalomyelitis mainly in northern 

Australia) are not well understood210. Thus, adopting the One Health Initiative (a strategy 

involving interdisciplinary collaborations of health professionals at the local, national and 

global levels in all aspects of healthcare for humans, animals and the environment211) will 

promote cooperation and strategic planning between physicians, ecologists, environmental 

scientists and veterinarians. Furthermore, interdisciplinary efforts will help to address the 

sapronotic spread of the disease and to establish effective melioidosis interventions.

To implement One Health Initiative approaches, potential technology-based solutions, such 

as wireless and mobile technologies for the delivery of health interventions and education 

and the interactive tools currently displayed on the aforementioned melioidosis website 

(http://www.melioidosis.info), should be implemented in resource-limited settings. One 

Health Initiatives for melioidosis could also lead to a broader engagement of organizations 

and individuals with experience in prevention, surveillance and clinical case management of 

neglected tropical diseases, as well as individuals with training in economic development, 

genomics, veterinary sciences, wildlife management, agriculture, molecular biology and 

bacteriology, ecology, policy and law211. The implementation of this interdisciplinary 

initiative would combine field efforts addressing both endemic and emerging melioidosis but 

requires effective global health governance210.
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Advances in vaccine development

A vaccine could be a cost-effective intervention in tropical developing countries, particularly 

if used in high-risk populations such as individuals with diabetes mellitus, even if it 

produces only partial immunity212. The Steering Group on Melioidosis Vaccine 

Development has highlighted the need for standardized animal models and for advancing 

melioidosis vaccine candidates to preclinical and clinical studies, and the challenges posed 

by bacterial strains and routes of immunization. Furthermore, it recognized that vaccines 

designed for the military or other populations involved in biodefense have different 

requirements from those designed to prevent naturally acquired melioidosis in endemic 

areas213.

No melioidosis vaccine is currently available for human use; some vaccine candidates have 

been shown to provide partial protection against melioidosis or glanders in murine models of 

infection212,214,215, but few have been tested in non-human primates or humans216. Live 

attenuated vaccines induce a more-comprehensive immune response in animal models and 

are currently considered the best approach for generating protection against B. pseudomallei 
infection16,217. However, subunit-based vaccines provide a feasible alternative because of 

their increased safety and potential for large-scale production. Experimental evidence 

indicates that the combination of bacterial polysaccharides (LPSs or other capsular 

polysaccharides) with well-defined protein antigens (glycoconjugates) can generate 

substantial protection against Burkholderia infections217. This rapid advancement in vaccine 

design and optimization is very promising, and several vaccine candidates are currently 

being tested. However, a multivalent vaccine containing numerous immunogenic bacterial 

components will probably be necessary to achieve complete protection, as, in addition to a 

strong antibody response, both CD4+ and CD8+ T cells are also important in protection 

against human melioidosis.

Final thoughts

New global environmental sampling studies and improvements in diagnostic microbiology 

could enhance the understanding of the geographical distribution and burden of B. 
pseudomallei, and wide-scale whole-genome sequencing together with clinical details could 

provide new insights into the phylogeny and virulence of these bacteria. The application of 

such new techniques to isolates with well-characterized clinical and epidemiological 

metadata could provide further insights into melioidosis. New omics-based technologies will 

enable a better understanding of how B. pseudomallei evades immune surveillance and can 

remain latent for many years. The role of the human and environmental microbiota is only 

just beginning to emerge218 and could offer creative insights into how to tackle the infection 

in vivo and reduce exposure in terra.

Affordable, effective alternative drugs and new drug targets are needed to reduce mortality, 

relapse and the duration of treatment courses. More than 80% of individuals with diabetes 

mellitus live in low-income and middle-income countries, and the numbers are projected to 

increase by >55% globally by 2050, with tropical countries facing the brunt of this 

epidemic219. Case clusters of melioidosis have also been associated with severe weather 

events220,221, which, based on the current estimates of global climate change, might become 
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increasingly common. This combination could cause a surge of melioidosis, particularly in 

countries where it has previously been under-reported, such as India. Calculating a 

representative disability-adjusted life year metric could also provide better comparative 

burden information and prompt regulating bodies to recognize melioidosis as a neglected 

tropical disease.
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Box 1 |

Diabetes mellitus and melioidosis

There is a strong correlation between diabetes mellitus and Burkholderia pseudomallei 
infection, as 23–60% of patients with melioidosis also have diabetes12. Diabetes results 

in blunted B. pseudomallei-specific cellular responses during acute infection121, 

including decreased capacity for macrophages to phagocytose and kill the bacteria, 

reduced lipopolysaccharide-induced generation of CD4+ regulatory T (Treg) cells and 

impairment of Toll-like receptor-mediated myeloid differentiation primary response 

protein MyD88 inflammatory signalling. Dysregulated phosphorylation of nuclear factor-

κB results in excessive tumour necrosis factor and IL-12 production by mononuclear 

cells, resulting in greater risk of septic shock222,223. Furthermore, disease progression 

and severity in diabetes is exacerbated by loss of effective proliferation of CD4+ T cells 

(which express higher levels of cytotoxic T lymphocyte protein 4) and loss of CD4+ T 

cell function, which is exacerbated by increased expression of programmed cell death 1 

ligand 1 (a known regulator of T cell activation) on neutrophils; these neutrophils also 

inhibit interferon-γ production224.

In individuals with diabetes, several studies have demonstrated defects in neutrophil 

adhesion, chemotaxis and intracellular killing, but studies on the efficiency of neutrophil 

phagocytosis show mixed results225. Conflicting observations could be due to 

methodological differences; reduced phagocytosis could be explained by decreased 

opsonization of bacteria (a prerequisite for neutrophil uptake), possibly due to glucose 

affecting the thioester bond of complement C3 and thereby preventing binding to the 

bacterial surface225. Humoral responses are also poorer and could affect vaccination225.

However, diabetes was associated with a lower overall mortality in patients with 

melioidosis in Thailand, although only in those who were being treated with 

glibenclamide202. Glibenclamide is an anti-inflammatory agent that inhibits IL-1β 
secretion by monocytes and reduces neutrophil pro-inflammatory cytokine production by 

lowering free glutathione and enhancing IL-1 receptor-associated kinase 3 (IRAK3) 

pathways; this results in reduced IL-1β secretion in a dose-dependent fashion226,227. 

Patients taking glibenclamide prior to admission have attenuated inflammatory 

responses202.
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Box 2 |

Genome and phylogeny of Burkholderia pseudomallei

The genome of Burkholderia pseudomallei consists of two circular replicons — 

chromosome 1 (4.07Mb) and chromosome 2 (3.17 Mb). Chromosome 1 largely encodes 

proteins involved in core housekeeping functions, such as cell wall synthesis, metabolism 

and motility, whereas chromosome 2 mostly encodes proteins required for accessory 

functions involved in adaptation to environmental conditions228. Within this bipartite 

structure, horizontal gene transfer (transmission of genetic material other than by vertical 

transmission from parent to offspring) provides genetic plasticity, as represented by the 

large metabolic repertoire and intrinsic redundancy of virulence factors, such as type III 

secretion systems229. The pan-genome of B. pseudomallei shows substantial genetic 

heterogeneity between strains, which is largely influenced by horizontal gene transfer, 

recombination and mutations230,231.

This highly plastic and, as a consequence, highly variable genome across B. pseudomallei 
strains could also have a role in the various manifestations and disease courses of 

melioidosis98,229. Bacterial genetic mutations can also occur during the infection. For 
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example, mutations in variable number tandem repeats were detected in isolates collected 

2 weeks apart from a patient with acute melioidosis229,230. Geographical segregation 

could also contribute to different clinical manifestations, as region-specific genetic loci 

are associated with variability in survival and virulence232. Whole-genome tiling array 

expression data demonstrated that non-coding RNA could play an important part in 

virulence and host-pathogen interactions40.

Phylogenetic analysis demonstrates greater genetic diversity and a clear distinction 

between isolates from Australia and Asia, supporting the hypothesis that Australia was an 

early reservoir for the current global B. pseudomallei population232. Within the endemic 

zone of southeast Asia, the Mekong subregion has emerged as a hot spot for B. 
pseudomallei evolution232. Furthermore, isolates from Africa and Central and South 

America seem to have a common origin, as suggested by close ancestry that originated 

between the 17th and 19th centuries232.

*New Caledonia, Australia, Fiji and Papua New Guinea; ‡Brunei, Cambodia, Indonesia, 

Lao People’s Democratic Republic, Malaysia, Philippines, Singapore, Thailand and 

Vietnam; §China; ∥India and Bangladesh; ¶Burkina Faso, Chad, Gabon, Kenya, 

Madagascar, Mauritius and Nigeria; #Ecuador, Brazil, Martinique, Puerto Rico, 

Venezuela and the Virgin Islands. Figure adapted from (REF. 232), Macmillan Publishers 

Limited.
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Box 3 |

Antimicrobial drug resistance

The Burkholderia pseudomallei genome contains several genes encoding Ambler class A, 

B and D β-lactamases. The most important is penA on chromosome 2, which encodes a 

class A membrane-bound lipoprotein that is secreted by the twin-arginine transport 

system with the ability to hydrolyse most β-lactams6,233.

Acquired antimicrobial resistance during melioidosis treatment is rare. Studies of 

acquired β-lactam resistance (including to carbapenems) whilst on therapy identified 

three distinct phenotypic changes, mainly resulting from penA mutations: derepression of 

the chromosomal enzyme, insensitivity to β-lactamase inhibitors and specific ceftazidime 

resistance6,234. In isolates from patients in Thailand who did not respond to ceftazidime, 

large segments of chromosome 2 were deleted, including three genes encoding putative 

penicillin-binding proteins, which are known targets of β-lactam antibiotics235.

Additionally, omp38, which encodes an outer membrane porin, is thought to contribute to 

ceftazidime and carbapenem resistance233. Metallo β-lactamase type 2 (encoded by 

blaNDM-1) is a lipoprotein carbapenemase expressed on the outer membrane of Gram-

negative bacilli and can be shed in outer membrane vesicles, thereby representing a new 

mechanism of resistance dissemination that can confer phenotypic resistance to 

beneficiary bacteria236. B. pseudomallei penA could have a similar purpose236. Of note, 

2017 reports from isogenic B. pseudomallei strains (isolated from the same patients at 

different time points and traced to a single ancestor) from patients on meropenem have 

shown increasing minimum inhibitory concentrations237.

B. pseudomallei lipopolysaccharide structure also plays an intrinsic part in resistance to 

cationic peptides, such as polymyxin B. B. pseudomallei encodes at least ten resistance 

nodulation division efflux pump systems, spanning both chromosomes, that confer at 

least partial resistance to six antibiotic classes, including aminoglycosides, 

fluoroquinolones and tetracyclines233. Mutations targeting folA, which encodes 

dihydrofolate reductase, and BpeEF-OprC efflux pump expression confer resistance to 

trimethoprim238. In vitro, B. pseudomallei cells growing as a biofilm were viable after 24 

h of antibiotic (trimethoprim or ceftazidime) exposure, with a minimum inhibitory 

concentration of up to 200-times that of planktonic bacteria6. Inhibition of efflux pumps 

might lower resistance to ceftazidime and doxycycline in these biofilms239.
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Box 4 |

Role of coagulation in melioidosis

New insights have enhanced our knowledge of the roles of coagulation and fibrinolysis 

and their interplay with inflammation in the pathogenesis of melioidosis (reviewed in 

REF. 240). There seems to be a bidirectional role of inflammation and coagulation during 

melioidosis: activation of coagulation and subsequent fibrin deposition plays an essential 

part in the host’s defence against infection; however, inflammation-induced coagulation 

could be detrimental if it is not adequately controlled and could lead to the clinical 

syndrome of disseminated intravascular coagulation. Plasma levels of anticoagulant 

vitamin-K-dependent protein C, vitamin-K-dependent protein S and antithrombin 3 are 

decreased in patients with acute severe melioidosis241,242. High ratios of thrombin–

antithrombin complexes over plasmin-α2-antiplasmin complexes (which reflect the 

consumption of clotting factors and activation (high ratios) or inhibition (low ratios) of 

fibrinolysis pathways) indicate a predominance of procoagulant mechanisms in 

melioidosis, and elevated levels of soluble endothelial protein C receptor (whose function 

is less clear compared with the antithrombotic and anti-inflammatory effects of 

membrane-bound endothelial protein C receptor) on hospital admission are associated 

with increased mortality243. Furthermore, mice deficient in plasminogen activator 

inhibitor 1 (which have increased fibrinolysis and, therefore, decreased fibrin deposition) 

show heightened susceptibility to Burkholderia pseudomallei244. Activated protein C and 

the protein C system seem to have a bidirectional role, with a minimal amount of 

activated protein C required to support an appropriate antibacterial host response, 

whereas overexpression leads to a harmful phenotype243. Interestingly, the cytoprotective 

effects of activated protein C are independent of its anticoagulant function. The α2-

antiplasmin, a major inhibitor of fibrinolysis, protects from experimental melioidosis by 

limiting bacterial growth, inflammation, tissue injury and coagulation245. The urokinase-

type plasminogen activator receptor, which also plays a crucial part in fibrinolysis, 

protects against melioidosis by facilitating the migration of neutrophils to the site of 

infection and subsequently enabling the phagocytosis of B. pseudomallei, further 

underlying the bidirectional role between coagulation and inflammation in 

melioidosis240.
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Box 5 |

Antibiotic therapy for treatment of melioidosis

Initial intensive therapy

Initial intensive therapy should last for a minimum of 10–14 days and consists of 

ceftazidime (in wards) 2 g (50 mg kg−1 up to 2 g in children (<15 years of age)) 

intravenous, 6-hourly; or meropenem (in intensive care units) 1 g (25 mg kg−1 up to 1 g 

in children) intravenous, 8-hourly.

• Meropenem is the preferred initial intravenous therapy for neurological 

melioidosis (that is, in the presence of infection of the central nervous 

system), and the dose should be doubled.

• Consider adding trimethoprim–sulfamethoxazole (which has excellent tissue 

penetration) in the doses recommended for eradication therapy from the start 

of the initial intensive therapy in cases of neurological melioidosis, 

osteomyelitis and septic arthritis, skin and soft tissue infections and 

genitourinary infection including prostatic abscesses12,168.

• Long-term intravenous therapy (≥4–8 weeks) is recommended* where 

possible for complicated pneumonia, deep-seated infection (including 

prostatic abscesses), neurological melioidosis, osteomyelitis and septic 

arthritis168,246.

Eradication therapy

The eradication therapy should last for ≥3 months after the end of the initial intensive 

therapy and consists of trimethoprim–sulfamethoxazole‡ 6 + 30 mg kg−1 up to 240 

+ 1,200 mg in children, 240 + 1,200 mg in adults 40–60 kg and 320 + 1,600 mg in adults 

>60 kg orally, 12-hourly, and folic acid 5 mg (0.1 mg kg−1 up to 5 mg in children) orally, 

daily.

• Longer eradication therapy (≥6 months) is recommended for neurological 

melioidosis and osteomyelitis.

*This treatment guidance is consistent with the most up-to-date recommendations by the 

International Melioidosis Society (http://www.melioidosis.info). Recommendations 

derived from Australian studies121,88 and apply to resource-rich countries. In 

melioidosis-endemic regions, such prolonged intravenous therapy is often either not 

available or not affordable. Nevertheless, a minimum of 10 days of intravenous therapy is 

recommended for all individuals with melioidosis, except for those with localized skin 

disease without sepsis168,171.

‡The trimethoprim–sulfamethoxazole dose is usually expressed as separate doses of each 

individual drug.
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Figure 1 |. Milestones in the history of melioidosis.
Melioidosis was first recognised in Rangoon in 1911 by the British doctor Alfred Whitmore 

and his assistant C. S. Krishnaswami, although the name of the disease was coined by 

Thomas Stanton and William Fletcher. From the time when the aetiological organism was 

first identified, it has been renamed many times: Bacterium (or Bacillus) whitmori, 
Malleomyces pseudomallei, Loefflerella pseudomallei, Pfeifferella whitmori, Pseudomonas 
pseudomallei and, finally, it was officially named Burkholderia pseudomallei in 1992. CDC, 

Centers for Disease Control and Prevention.
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Figure 2 |. Estimated mortality and reported cases of melioidosis.
Only Australia, Brunei and Singapore have national surveillance data for melioidosis that are 

comparable to the estimates. Between 2010 and 2015, there were >100 culture-confirmed 

cases of melioidosis at a single hospital in Lao People’s Democratic Republic yearly247, a 

number that supports the estimated 420 cases per year countrywide3. However, ~20,000 

cases of melioidosis per year are estimated in Indonesia, but only 64 have been reported in 

the country since 1921 (REF. 248). A large difference between the numbers of predicted and 

observed cases is also observed in Bangladesh, Brazil, China, India and Nigeria3. This 

discrepancy could be due to limitations of the model, underuse of clinical microbiology 

laboratories206, lack of awareness of melioidosis and poor disease reporting systems. Based 

on data from REF. 3. N/A, not applicable.
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Figure 3 |. Schematic model of host-pathogen interactions and pathophysiology of melioidosis.
Burkholderia pseudomallei secretes N-acyl-homoserine lactones (AHL), which are 

signalling molecules involved in the quorum sensing machinery that is used to coordinate 

attacks against the host environment and biofilm formation. The type III secretion system 

(T3SS) effector proteins are necessary for invasion and escape from the endocytic vesicle; 

cell entry is aided by flagella, lipopolysaccharide (LPS), type IV pili and adhesins BoaA and 

BoaB. B. pseudomallei then guickly escapes the vesicle by lysing the membrane using 

T3SS, T6SS and T2SS. Metabolic flexibility (resistance to oxidative stress), resistance to 

antimicrobial cationic peptides and ecotin production enable bacteria to survive within an 

acidic endocytic environment. Effector protein BopA and translocator protein BipD further 

block sequestration in endocytic vesicles and prevent microtubule-associated proteins 1A/1B 

light chain 3B (LC3)-associated autophagy. Once free in the cytoplasm, B. pseudomallei 
replicates, induces the formation of actin-based membrane protrusions and can move via 

continuous polymerization of host cell actin at polar ends (a process regulated by 

autotransporter BimA), thereby facilitating spread to neighbouring cells, cell fusion and 

multinuclear giant cell (MNGC) formation. T6SS and the type IV secretion system (VgrG-5) 

are essential to this process. Toll-like receptors (TLRs) located on cell surfaces recognize 

pathogen-associated molecular patterns (such as LPS and flagella) and mediating nuclear 

factor-κB (NF-κB)-induced activation of the immune response, releasing pro-inflammatory 

cytokines IL-1β and IL-18. Intracellular inflammasome receptors such as NLR family 
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CARD domain-containing protein 4 (NLRC4) and NACHT, LRR and PYD domains-

containing protein 3 (NLRP3) recognize bacterial virulence factors and damage-associated 

molecular patterns (DAMPS), triggering caspase-1-mediated pyroptosis and further release 

of IL-1β and IL-18. IL-18 further ensures protective interferon-γ (IFNγ) production 

(mainly from natural killer cells). Neutrophils, dendritic cells, B cells and T cells are 

recruited towards the site of infection, and the complement and coagulation cascades are 

activated. AhpC, alkyl hydroperoxide reductase; BLF1, Burkholderia lethal factor 1; CIS, 

cytokine-inducible SH2-containing protein; DpsA, DNA starvation/stationary phase 

protection protein; EIF4A, eukaryotic initiation factor 4A; ER, endoplasmic reticulum; 

iNOS, inducible nitric oxide synthase; IRAK3, interleukin 1 receptor-associated kinase 3; 

KatG, catalase-peroxidase; MyD88, myeloid differentiation primary response protein; NF-

κBIα, NF-κB inhibitor-α; NO, nitric oxide; NOD2, nucleotide-binding oligomerization 

domain-containing protein 2; ROS, reactive oxygen species; RpoS, RNA polymerase σ-

factor RpoS; SOCS3, suppressor of cytokine signalling 3; SodC, copper/zinc superoxide 

dismutase; TNF, tumour necrosis factor; TRAF6, TNF receptor-associated factor 6; TssM, 

type VI secretion system.
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Figure 4 |. Clinical manifestations of melioidosis.
Examples of possible clinical presentations of melioidosis: an MRI of the brainstem and 

cervical spinal cord with inflammatory changes consistent with encephalomyelitis (arrow, 

part 1); a ring-enhancing lesion with surrounding oedema in the MRI image indicating 

cerebral abscesses (arrow, part 2); a CT image of prostatic abscesses (arrow, part 3); a CT 

image of a mediastinal mass (arrow, part 4); a child with tense parotitis (arrow, part 5); X-

ray image of severe pneumonia (arrow, part 6); photo of a subcutaneous abscess (arrow, part 

7); and an MRI image of osteomyelitis of the distal femur with surrounding inflammation 

(arrow, part 8). Clinical images 1–4, 6–8 courtesy of Bart J. Currie, Menzies School of 

Health, Australia. Clinical image 5 is reproduced with permission from (REF. 249), Elsevier.
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Figure 5 |. Identification of Burkholderia pseudomallei colonies on three common types of agar.
Typical appearance of Burkholderia pseudomallei and Escherichia coli isolated from non-

sterile clinical samples. Suspected clinical specimens and suspected bacterial colonies 

should be processed in a biological safety cabinet. a | B. pseudomallei forms creamy, non-

haemolytic colonies that resemble a coliform after 2 days of incubation; by day 4, the 

colonies are covered by a slight metallic sheen and become dry and wrinkled. b | B. 
pseudomallei colonies resemble a colourless, non-lactose fermenting coliform after 2 days 

of incubation; by day 4, the colonies appear dry and wrinkled. c | After 2 days of incubation, 

the first visible B. pseudomallei colonies are pinpoint with a clear to pale pink colour; by 

day 4, they become darker pink to purple, flat, slightly dry and wrinkled with a definite 

metallic sheen. E. coli fails to grow because it is inhibited by gentamicin in the agar. d | 

Three-disc diffusion antibiotic sensitivity testing: B. pseudomallei is resistant to colistin (or 

polymyxin) (black arrow) and gentamicin (arrowhead) (although sensitive isolates exist in 

some areas) and sensitive to co-amoxiclav (red arrow). Parts a–c courtesy of Direk 

Limmathurotsakul, Premjit Amornchai and Vanaporn Wuthiekanun, Mahidol-Oxford 

Tropical Medicine Research Unit, Thailand. Part d courtesy of Vanaporn Wuthiekanun, 

Mahidol-Oxford Tropical Medicine Research Unit, Thailand.
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